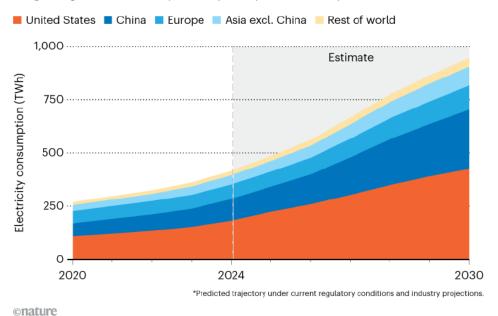
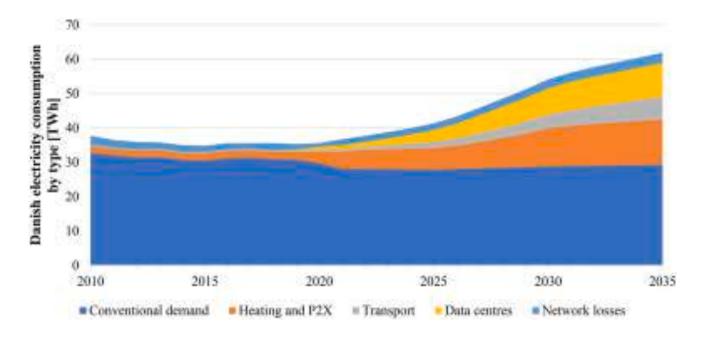


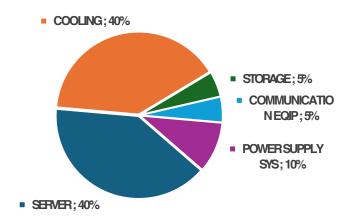
DATA CENTER FORUM CORENHAGEN 2025

datacenter systems granting long working life of the equipment


Mr. Luigi Rossettini
International Director AERMEC Italia
Member of AICARR (http://www.aicarr.org/Pages/EN/Membership/Full_Member_Alphabetical.aspx#R)


ENERGY CONSUMPTION IN DATA CENTER

DATA-CENTRE ENERGY GROWTH


China and the United States are predicted to account for nearly 80% of the global growth in electricity consumption by data centres up to 2030*.

The **efficiency** of the cooling system play a key role in Data Center Saving

DATA-CENTRE ENERGY CONSUMPTION

METHODS TO OPTIMIZE THE EFFICIENCY IN DATA CENTER INSTALLATION WITH HYDRONIC SYSTEM

TECHNICAL DATA
EER / COP / SCOP /SEPR

NOT ENOUGH

AERMEC

BMS CONTROL: SEQUENCE HOMOGENEOUS

NOT ENOUGH

PUMPS FAN WALL CDU AND CONTROL

NOT ENOUGH

DATA HALLS: COOLING LOAD HEATING RECOVERY MAINTENANCE ETC.....

NOT ENOUGH

Fase I: Definition of the variables

- Technologies and units for the energy production
- Project objectives.
- Related to the installation

Technologies and units for the energy production

- Type of unit
- Technology of compression.
- Design criteria
- Type of Evaporator
- Type of Compressor
- Activation Sequency

- ☐ Unit Type:
 - Air Condensation
 - > Water Condensation
- ☐ Evaporator Type:
 - > Plates
 - > Shell & Tubes
- Versatility
 - Cooling only
 - > 4 Pipes
 - ➢ 6 Pipes

- Compression Technology:
- > Scroll
- > Screw
- Stepless; Inverter

ON/OFF;

- Centrífugal
- ☐ Condenser Type
 - ➤ Coils Cu/AL
 - Microchannel
- Opportunity
 - Heat Recovery
 - Free Cooling
 - Geothermal

- Design criteria:
 - High Efficiency
 - > Low Noise
 - > Dimensions
 - > Redundancy
- External Contraints
 - > Cost
 - > Space
 - Ceritification
 - ➤ Other...

WE NEED A CLEAR METHOD WITH ALL ACTORS JOINT TOGETHER

Fase I: Definition of the variables

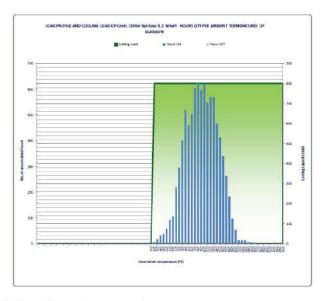
- Technologies and units for the energy production
- Project objectives.
- Related to the installation

Fase II: Simulation and possible alternatives

- Different unit type
- Different n° of units
- Different setting of the multichiller

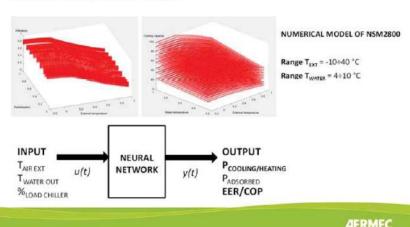
Fase III: Definition of the best solution

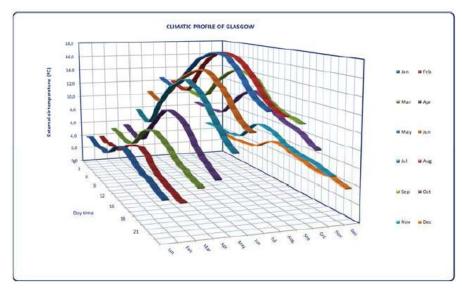
- Lower operating cost
- Lower payback time
- Less investments

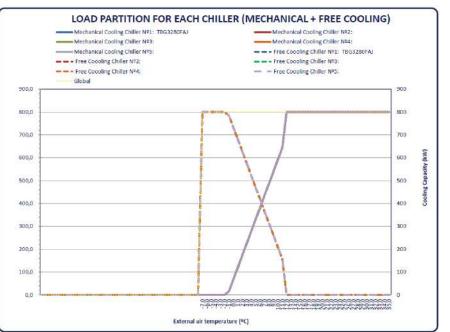

PROJECT NOMINAL CONDITIONS

Design Ambient Ta (aC)	45,0
Water Set point (°C)	22,0
Climatic Area	DUBLIN
Maximum LOAD (kW):	1.127,0
ΔT S/ Return Free Cooling O	3,0
Amb. T ^a for Homogeneous	27,0

Dynamic I water set point					
Dynamic T water set point	LOAD 100% / Two °C				
Dynamic T water set point	LOAD 0% / Two °C				
ΔT nominal	8,0				
	1 127				
Minimum Load (kW):	1.127				
	1.127 -10,0				
Minimum Load (kW): Ta mín (2C) P=0 kW Glycol %	2 144				

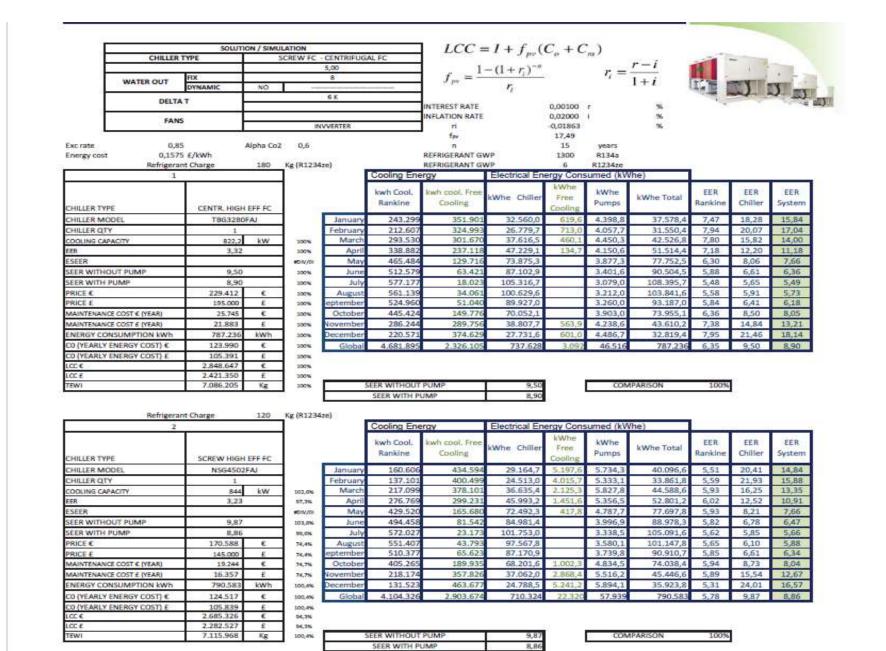






Multichiller EVO - Neural network

The simulation defined by the neural network that has been implemented to develop **MULTICHILLER EVO** ensures a high level of accuracy in real working environments, using a small number of processed variables.


			Max Mechai	nical Coolin	g Capacity	
External air	Load	NSGi6402FA				
temperature	Loud	145010402174				
45,0	1.127,0	1.601,7				
44,0	1.127,0	1.623,5				
43,0	1.127,0	1.645,2				
42,0	1.127,0	1.666,8				
41,0	1.127,0	1.688,3				
40,0	1.127,0	1.709,7				
39,0	1.127,0	1.731,0				
38,0	1.127,0	1.752,2				
37,0	1.127,0	1.773,3				
36,0	1.127,0	1.794,2				
35,0	1.127,0	1.815,1				
34,0	1.127,0	1.835,9				
33,0	1.127,0	1.856,6				
32,0	1.127,0	1.877,2				
31,0	1.127,0	1.897,6				
30,0	1.127,0	1.918,0				
29,0	1.127,0	1.938,3				
28,0	1.127,0	1.958,4				
27,0	1.127,0	1.978,5				
26,0	1.127,0	1.998,5				
25,0	1.127,0	2.018,4				
24,0	1.127,0	2.038,1				
23,0	1.127,0	2.057,8				
22,0	1.127,0	2.077,4				
21,0	1.127,0	2.096,9				
20,0	1.127,0	2.116,2				
19,0	1.127,0	2.135,5				
18,0	1.127,0	2.154,7				
17,0	1.127,0	2.173,8				
16,0	1.127,0	2.192,7				
15,0	1.127,0	2.211,6				
14,0	1.127,0	2.230,4				
13,0	1.127,0	2.249,1				
12,0	1.127,0	2.267,7				
11,0	1.127,0	2.286,2				
10,0	1.127,0	2.318,8				
9,0	1.127,0	2.333,2				
8,0	1.127,0	2.346,3				
7,0	1.127,0	2.358,1				
6,0	1.127,0	2.368,6				
5,0	1.127,0	2.378,0				
4,0	1.127,0	2.386,3				
3,0	1.127,0	2.393,5				
2,0	1.127,0	2.399,8				
1,0	1.127,0	2.405,1				
0,0	1.127,0	2.409,6				
-1,0	1.127,0	2.413,3				
-2,0	1.127,0	2.416,2				
-3,0	1.127,0	2.418,5				
-4,0	1.127,0	2.420,2				
-5,0	1.127,0	2.421,3				
-6,0	1.127,0	2.422,0				
-7,0	1.127,0	2.422,2				
-8,0	1.127,0	2.422,0				
-9,0	1.127,0	2.421,6				
-10,0	1.127,0	2.420,9				

		Max Free Cooling Capacity						
External air temperature	Load	NSGi6402FA						
45,0	1.127,0							
44,0	1.127,0							
43,0	1.127,0							
42,0	1.127,0							
41,0	1.127,0							
40,0	1.127,0							
39,0	1.127,0							
38,0	1.127,0							
37,0	1.127,0							
36,0	1.127,0							
35,0	1.127,0							
34,0	1.127,0							
33,0	1.127,0							
32,0	1.127,0							
31,0	1.127,0							
30,0	1.127,0							
29,0	1.127,0							
28,0	1.127,0							
27,0	1.127,0							
26,0	1.127,0	226,5						
25,0	1.127,0	283,1						
24,0	1.127,0	339,7						
23,0	1.127,0	396,3						
22,0	1.127,0	452,9						
21,0	1.127,0	509,5						
20,0	1.127,0	566,2						
19,0	1.127,0	622,8						
18,0	1.127,0	679,4	1	Casling Fra				
17,0	1.127,0	736,0	_	Cooling End				
16.0	1 127 0	702.6						

1.127,0 1.127.0 FROM ASHRAE TEMPERATURE DATA OR DATA PROVIDED BY THE CONSULTANT OF THE SPECIFIC AREA WE CAN HAVE A TRUE PERFORMANCE OF THE UNIT OR UNITS AT THE SPECIFIC TEMPERATURE AND AT THE SPECIFIC LOAD. THIS RESULTS AS THE MOST RELIABLE AND REALISTIC DATA TO PROVIDE TO THE DATA CENTER

19,0	1.127,0	622,8			- IO	PROV	יו שעוי/	JIME	DATA	CEIN	IEK	
18,0	1.127,0 1.127,0	679,4 736,0	_	Cooling Ener		Wh) Input Energy (kWhe)			1			
17,0 16,0	1.127,0	792,6			5.95 (KTTI)		I par Enor			EED		
15,0	1.127,0	849,2		Mechanical	Free Cooling	Mechanical	Free Cooling	(Pumps +	Total Input	EER	EER	EER
14,0	1.127,0	905,8		Cooling	_			CRACS) Input		Mechanic		
13,0	1.127,0	962,5		Energy	Energy	input Energy	Input Energy	Energy	Energy	al	Chiller	System
12,0	1.127,0	1.019,1			222	66.010.0	1=0=			911	10.01	10.01
11,0	1.127,0	1.075,7	January	525.957	339.579	66.042,9	476,7	12.842,2	79.361,7	7,96	13,01	10,91
10,0	1.127,0	1.132,3	February	452.076	305.268	55.432,8		11.483,3	66.916,1	8,16	13,66	11,32
9,0	1.127,0	1.188,9										
8,0	1.127,0	1.245,5	March	618.029	220.459	80.846,8		12.058,6	92.905,4	7,64	10,37	9,03
7,0	1.127,0	1.302,1	April	643.860	167.580	86.490,0		11.327,9	97.817,9	7,44	9,38	8,30
6,0	1.127,0 1.127,0	1.358,8 1.415,4	May	759.057	79.431	109.389,8		10.730,9	120.120,8	6,94	7,67	6,98
5,0 4,0	1.127,0	1.413,4	IVIdy							′	,	
3,0	1.127,0	1.528,6	June	783.246	28.194	117.695,7		9.845,5	127.541,2	6,65	6,89	6,36
2,0	1.127,0	1.585,2	July	842.481	1.642	137.021,2		9.864,0	146.885,2	6,15	6,16	5,75
1,0	1.127,0	1.641,8	August	825.297	13.191	132.078,2		9.961,2	142.039,4	6,25	6,35	5,90
0,0	1.127,0	1.698,5				,						
-1,0	1.127,0	1.755,1	September	773.168	38.272	116.086,8		9.951,4	126.038,2	6,66	6,99	6,44
-2,0	1.127,0	1.811,7	October	757.302	81.186	107.906,6		10.747,2	118.653,8	7,02	7,77	7,07
-3,0	1.127,0	1.868,3										
-4,0 -5,0	1.127,0 1.127,0	1.924,9 1.981,5	November	606.437	205.003	79.188,8		11.564,1	90.752,9	7,66	10,25	8,94
-6,0	1.127,0	2.038,1	December	570.812	267.676	72.916,8		12.282,5	85.199,4	7,83	11,50	9,84
-7,0	1.127,0	2.094,8	Global	8.157.722	1.747.481	1.161.096	477	132.659	1.294.232	7,03	8,53	7,65
-8,0	1.127,0	2.151,4		<u> </u>	<u> </u>		I					

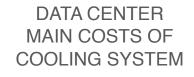
WE NEED A CLEAR METHOD WITH ALL ACTORS JOINT TOGETHER

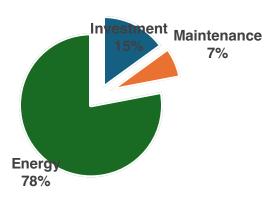
CONCLUSIONS:

SOLUTION 1: DESPITE THE ULTIMATE TECHNOLOGY AVAILABLE FOR COMPRESSION WITH THE BEST EFFICIENCY, IT IS NOT RESULTS AS THE BEST SOLUTION IN TERM OF LIFE CYCLE COST, AS THE INITIAL COST IS HIGHER AND AS WELL THE MAINTENANCE COST COMPARED WITH THE OTHER SOLUTIONS.

SOLUTION 2: IT IS THE MOST CONVENIENT IN TERMS OF LIFE CYCLE COST DESPITE IT IS NOT THE MOST EFFICIENT. THE EFFICIENCY IS VERY CLOSE TO THE SOLUTION AS THE SOLUTION 2 GET THE BENEFIT OF BIGGER SURFACE OF FREE COOLING COILS.

Assumptions:


- In order to calculate the pumping energy for each chiller we have taken into account that the primary circuit pressure drop is 100kPa.
- The pumps efficiency was calcilated at 80% max.
- The load profile in in compliances with the figures supplied by the customer considering the process cooling operation for data center. We have considered the same total amount of energy consumption per year and the quantities of hour with the specific load.
- The life time 15 years.
- Temperature profile in compliances with ASHRAE weather data for Glasgow.


LIFE CYCLE COST (LCC)

The data center Manufacturer of the cooling system should be able to produce a simulation taking into account the costs he can control in cooperation with the Consultant and the Data Center Provider. Those simulation should produce a final cost of ownership or better called the **Life Cycle Cost** (**LCC**) as also defined by the European standard EN13779.

Here below the approximated partition of the total life cycle cost.

The investment costs of a Data Center systems is close to 15% of the total life cycle cost.

→ The 78% of the LCC is related to the input energy the system required.

It is therefore FUNDAMENTAL to use systems with high efficiency, reliability in order to grant a better LCC or (pPUE).

LIFE CYCLE COST (LCC)

The EN 13779 standard define the Life Cycle Costs (LCC) as follows:

$$LCC = I + f_{pv}(C_o + C_m)$$

I = Amount of initial Investment

$$f_{pv}$$
 = actualization factor defined as: $f_{pv} = \frac{1 - (1 + r_i)^{-n}}{r_i}$

Where n is the estimated life time in Years; r_i is the real interest rate expressed as a function of the financial interest rate r; and finally taking into account the inflation rate i:

$$r_i = \frac{r - i}{1 + i}$$

 C_o = Energy cost per year.

C_m = Maintanance cost per year

HAVE A GREAT DAY

Mr. Luigi Rossettini
International Director AERMEC Italia

luigi.rossettini@aermec.com

aermec.com

