Data Centre Sustainability

John Booth BSc (Hons) Tech (Open), CDCAP, CDCSP, MBCS

MD Carbon3IT Ltd

DCF Helsinki

4th November 2021

John Booth

MD - Carbon3IT Ltd
Technical Director - National **Data Centre** Academy

Vice Chair BCS Green IT SG

BSI TCT7/3 Committee – EN 50600 **Data Centre** Standards

EU Code of Conduct for Data Centres (Energy Efficiency) Joint Author/Reviewer/Committee Member

Data Centre Alliance – Chair SIG Data Centre Energy Efficiency & Committee Member Sustainability

DCD CEEDA (Certified Energy Efficient Data Centre Award) Global Lead Assessor

ISO 50001 Energy Management Systems Lead Auditor

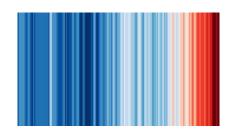
ISO 22301 Business Continuity Management Systems Lead Auditor

Energy Saving Opportunities Scheme (ESOS) Lead Assessor – Energy Management Association

Certified **Data Centre Audit** Professional (CDCAPTM)

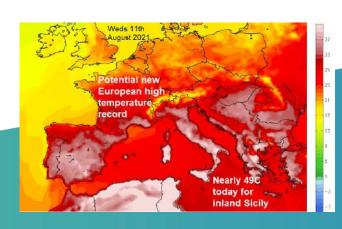
Certified **Data Centre Sustainability** Professional (CDCSPTM)

Advisory Board - Sustainable Digital Infrastructure Alliance


iMasons Sustainability Committee

EU H2020 Projects

- PEDCA Pan European Data Centre Academy
- EURECA Green Procurement for Public Sector Data Centre
- CATALYST Data Centres as Flexible Energy Hubs (Renewables, Grid & Heat Services)


The "Climate Emergency"

Weather and climate change risks in Helsinki

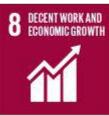
What is "Sustainability"?

Sustainability is defined as "Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs."

The United Nations have published a document that extends this definition into 17 specific goals

https://sustainabledevelopment.un.org/content/documents/5987 our-common-future.pdf

UN Sustainable Development Goals



What needs to be done!

10 Key Solutions Needed to Reduce Greenhouse Gas Emissions

PHASE OUT coal plants

INCREASE public transport

2.

DECARBONIZE
aviation and shipping

3. 👘

8.

HALT deforestation & RESTORE

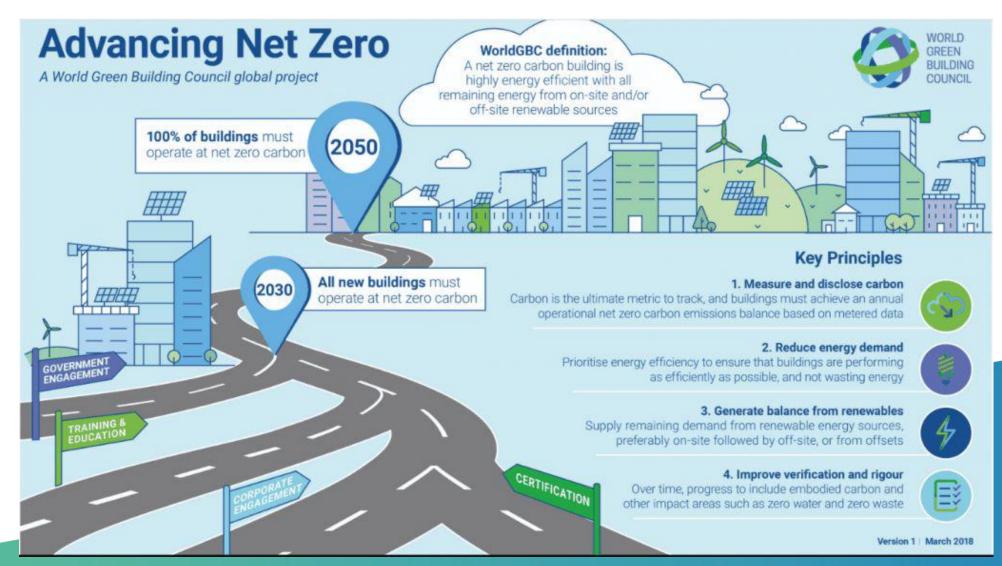
4.

DECARBONIZ cement, steel

REDUCE food

5.

SHIFT to electri vehicles 10.9


 EAT more plant & less meat

Source: WRI.

Net Zero - Buildings

DATACENTER FORUM

Any Questions?

There is NO globally recognised definition of what a...

Sustainable Data Centre

Looks like!

EU Code of Conduct for Data Centres (Energy Efficiency)

EN 50600 TR-99-1 Best Practices for Energy Efficiency (EUCOC)

EN 50600 TR-99-2 Best Practices for Sustainability

ISO30134 Series Data Centre KPIs (PUE etc)

iMasons Sustainability Framework

The "<u>Designing and Building the Next Generation of Sustainable Data Centers</u>" document published in December 2019 issued a "call to action"

"We must rethink how we design, build, and operate next generation data centers and adopt using the sustainable cost of ownership which includes economics, resource impact, and society benefits."

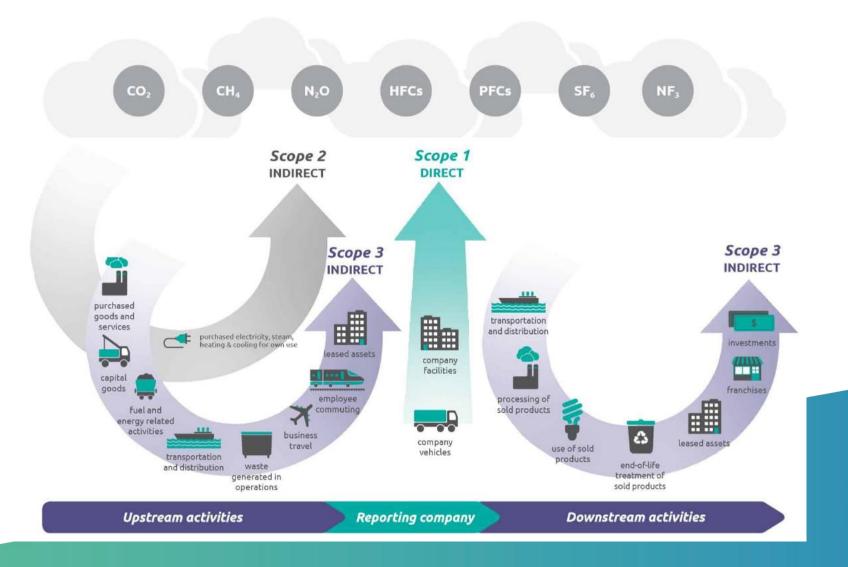
And defines the "sustainable data center/centre" as:

The next generation data center has sustainability at its core.

It uses renewable energy 24x7x365 and achieves net zero results in carbon footprint, emissions, and waste.

It does this while maintaining 99.999% uptime and achieving optimal resource (power, water, land, network) usage effectiveness, such as PUE near 1.000, and a WUE near 0.000.

In essence....


<u>Sustainable</u> data centers use <u>renewable energy</u> sources, reuse <u>materials</u> to perpetuate their <u>life cycles</u>, remanufacture by-products and reduce landfill impact.

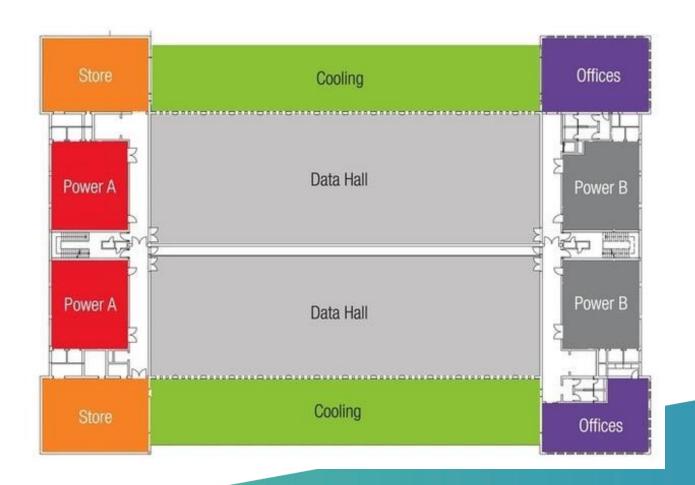
Overall, the <u>sustainable</u> data center <u>benefits the environment,</u> <u>society, and human welfare 24x7x365, thus aligning with the UNSDG goals.</u>

DATACENTER

FORUM

The "GHG Scopes"

Any Questions?



Current Designs

The Fiesta!

IT'S TIME FOR A RADICAL RETHINK

EU Code of Conduct for Data Centres (Energy Efficiency)

CLC/TR EN 50600 TR-99-2

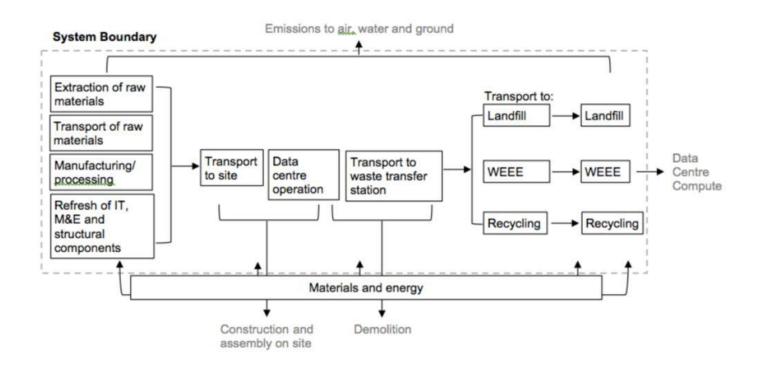
The impact from manufacturing the mechanical and electrical systems and IT equipment dominate the embodied environmental impact of data centres – being two to three orders of magnitude greater than the construction phase.

As a result, environmental assessment methods for buildings (such as BREEAM and LEED), which consider the embodied impact of only the construction materials, are of limited use, even though they have data centre specific schemes, because these components are omitted from consideration.

DATACENTER

FORUM

CLC/TR EN 50600 TR-99-2


Users of this document are not required to undertake an LCA. This sub-clause provides a background to the method, and guidance based on the findings of previous LCA studies.

However, users who wish to undertake an LCA to gain a more detailed understanding of the areas of impact of a specific facility are referred to in EN 15643-1, EN ISO 14040, ITU-T L.1410 and the ILCD Handbook.

EUCOC 3.2.4 Lifecycle Assessment, Mandatory for "New Build/Retrofit from 2022

CLC/TR EN 50600 TR-99-2

Data Centre Lifecycle TCO Emissions

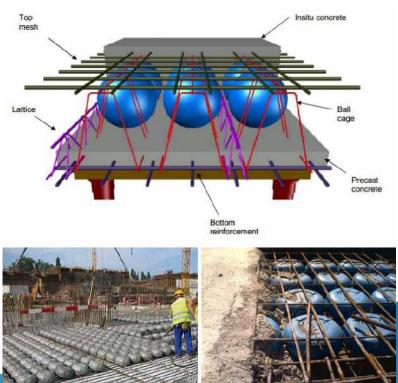
Phase	GHG Emissions	Timescale	GHG Scope	Comments		
Design/Construction	1-4%	1-2 Years	3			
M&E Fit Out	4%	20-25 Years	3			
IT Fit Out	12%	3-5 Years	3			
Operations	80%	25+	1 or 2 and 3	Depends on Power Source		
Decommissioning	Marginal	1-2 Years	3			

Construction Materials - EPD

			- 3	Use/Operational Stage													
Life Cycle Stages		Product		Construction		Related to Building Fabric				Related to Building Operation		End of Life			Benefts and Loads beyond the System Boundary		
Modules	A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
	Raw Material Supply	Transport	Manufacturing	Transport	Construction/Installation	Ose	Maintenance	Rapair	Replacement	Refurbishment	Operational Energy Use	Operational Water Use	Demolition	Transport	Waste Processing	Disposal	Reuse/Recovery/ Recycling Potential
EPD - Cradle to Gate																	Optional
EPD - Cradle to Grave																	Optional

Mandatory Optional

Construction Materials - EPD



ENVIRONMENTAL INDICATOR	UNITS				
Global Warming Potential (GWP)	kg CO2e/Kg or product unit				
Ozone Depletion	kg CFC11e/Kg or product unit				
Acidification of Soils and Waters	kg SO2e/Kg or product unit				
Eutrophication	kg (PO4)3-e/Kg or product unit				
Photochemical Ozone Formation	Ethene e /Kg or product unit				
Exhaustion of Abiotic Resources (elements)	kg Sb e/Kg or product unit				
Exhaustion of Abiotic Resources (fossil fuels)	MJ/Kg or product unit				
Water Depletion	m3/Kg or product unit				
Water Pollution	m3/Kg or product unit				
Air Pollution	m3/Kg or product unit				

Construction Materials - Concrete

ITEM	Kg/m3	VALUE, Kg CO2e / t	Kg CO2e/m3								
CEMENT											
CEM I 42.5 R	330	881	308								
VICANT - Naturat CEM II/A-M (LL-P) 42,5 R CE NF (-30%)	330	617	221								
CEMEX - Vertua Classic (Max -50%)	330	441	163								
LAFARGE-HOLCIM - EcoPact (-60%)	330	352	133								
AGGREGATES											
Sand 0-4	752.1	10	8								
Coarse 4-8	583	10	6								
Coarse6-12	332.9	10	3								
		SUM AGGREGATES	17								

Construction Materials - Steel

https://www.steelconstruction.info/Sustainability#Life_cycle_assessment_.28LCA.29

Current recovery rates from demolition sites in the UK are 99% for structural steelwork and 96% (on average) for all steel construction products – figures that far exceed those for any other construction material

The amount of energy used in steel manufacture has fallen by some 61% since the 1960s, according to World Steel Association data (2020), and further improvements are being sought from steel sector research and development investments.

It means that steel components have the potential to be perpetually reused in a continuous loop, and never sent to landfill; a truly circular economic model CENTER EQUID

Capital Plant Environmental Product Declaration

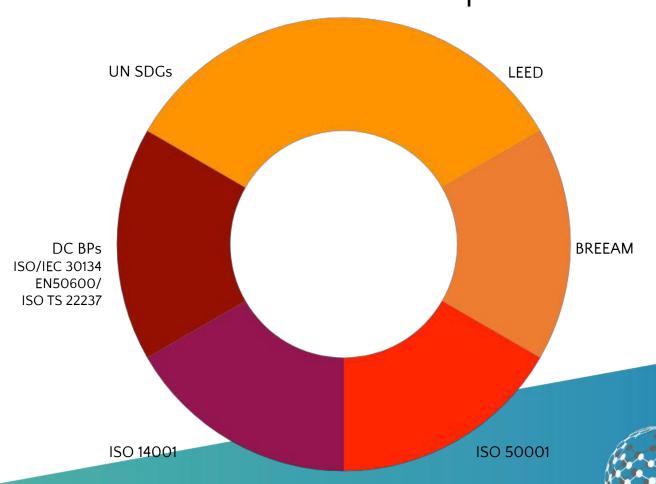
EUCOC 3.2.4 Lifecycle Assessment

All DC Supply Chain either have or are in the process of producing EPDs for their products.

https://www.environdec.com/all-about-epds

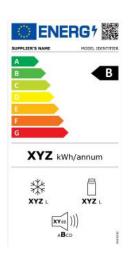
Operations

Follow the EUCOC
Management
Procurement (EPDs)
Calculate all the ISO 30134 KPIs
Calculate Operational GHG Scope 3's


Enterprise - Use Accredited Colo's Colo's - Consider Accreditation


Data Center Sustainability Wheel*: Certifications + Compliance

Any Questions?



EU – Data Centre Policy

EU - Climate Neutral Data Centre Pact

CNDCP Reporting Reqs (TBC) Mapping to ISO/IEC DC KPIs - 1

Energy Efficiency

ISO/IEC 30134-2 Data Centre Key Performance Indicators, Power Usage effectiveness (PUE) [30134-2] - PUE

Clean Energy

ISO/IEC 30134-3 Data Centre Key Performance Indicators, Renewable energy factor (REF) [30134-3] - REF

ISO/IEC 30134-4 Data Centre Key Performance Indicators, IT Equipment Energy Efficiency for servers [30134-4]

ISO/IEC 30134-5 Data Centre Key Performance Indicators, IT Equipment Utilization for servers (ITEUsv) [30134-5]

CNDCP Reporting Reqs (TBC) Mapping to ISO/IEC DC KPIs - 2

Circular Energy System

BS ISO/IEC 30134-6 Data Centre Key Performance Indicators, Energy Reuse Factor (ERF) - [30134-6]

Clean Energy??

BS ISO/IEC 30134-8 Data Centre Key Performance Indicators, Carbon Usage Effectiveness (CUE) –[30134-8]

<u>Water</u>

BS ISO/IEC 30134-9 Data Centre Key Performance Indicators, Water Usage Effectiveness (WUE) - [30134-9]

iMasons Sustainability Eramowark

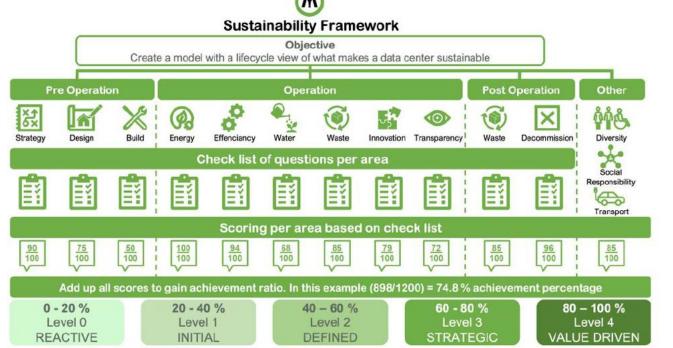


Figure 1 - iMasons Sustainability Framework

Tips

Use and formally participate in the EU Code of Conduct for Data Centres (Energy Efficiency)

Undertake some DC Energy Efficiency & Sustainability Assessments

Consider using/certifying to ISO 50001

Get an External Review perhaps some Sustainability Benchmarking

Undertake some Training

Consider CEEDA/DCA Certification

Sign up to Climate Neutral Data Centre Pact

<u>In essence....</u>

<u>Sustainable</u> data centers use <u>renewable energy</u> sources, reuse <u>materials</u> to perpetuate their <u>life cycles</u>, remanufacture by-products and reduce landfill impact.

Overall, the <u>sustainable</u> data center <u>benefits the environment</u>, <u>society, and human welfare 24x7x365, thus aligning with the UNSDG goals.</u>

Q&A's

Thank You

JOHN.BOOTH@CARBON3IT.COM

WWW.CARBON3IT.COM

@CARBON3IT Twitter/Skype

