Solution

Sanjay Kumar Sainani Global SVP & CTO of Huawei Data Center Facility

Smart DC, Building the Green Future **Huawei Next-Generation Smart Data Center**

High energy prices

Trend of DC in CEE&Nordic Europe

High xUE

Carrier Colo Transformation

Next-Generation Data Centers: Driven by Innovation, Building a Low-Carbon Intelligent Computing Base

High energy consumption

Sustainable

Green Efficie Recyc

Major Challenges to Traditional Data Center Construction

Long construction period

Simplified

Difficult O&M

Autonomous Driving

High security risks

Reliable

All Green

Electricity

Use green power on a large scale Use renewables such as PV, wind power, and hydropower instead of thermal power.

Sustainable: Efficient Use of Resources Throughout the Life Cycle

Water

Use less clean water Use reclaimed water or even no water.

Climate

Use more free cooling The free cooling duration can be extended if temperature and humidity are proper.

Evaluation indicator: PUE \rightarrow xUE

All Recyclable

Recycle materials at component, room, and campus levels.

Equipment room/campus level

Component/Auxiliary Material Level

Board level

electronic components

Simplified: Reshape Product Forms of Architecture, Power Supply, and Cooling

Simplified Architecture

Prefabricated buildings

Breaking a whole into parts: parallel works thanks to product design of engineering

Physical connections → Converged power supply

Maximized use of free cooling sources and one heat exchange

Simplified Cooling

Simplified cooling link

Autonomous Driving: Al Maximize the Value of "Maintenance, Optimization, and Operation"

O&M Automation

Manual inspection \rightarrow Al-based remote inspection

Smart sensing @IoT/voice recognition/ image recognition

Inspecting 2000 racks, 2 hours \rightarrow 5 minutes

Automatic Energy Efficiency Optimization

Enables Smart Cooling Auto energy efficiency optimization @AI

Water-cooled chilled water: 8%-15%,

Air-cooled chilled water: 5%-10%

Operation Autonomy

Maximizes Resource Value

Intelligent matching between SPCN demand and supply

Reliable: Build a Comprehensive Defense Line for Data Center Infrastructure.

Secure Architecture

Enhanced resilience and defense

Component level

Hot swap

5 min recovery

Modular design, lossless switchover, and always-on

Device level

Redundancy design

System level

E2E control

0 ms transfer

99.999% availability

Power electronics + ICT technologies

Proactive Security

Al predictive maintenance

Fault prediction **Remedy** → **Prevention** 1 min discovery, 3 min analysis, 5 min service recovery Manual response → Automatic response

Automatic fault response

Build a Low-carbon Smart Data Center Based on The Four Concepts of The Next-Generation Data Center

photovoltaic power generation + Energy storage system

Green electricity and energy storage

Low-carbon construction

construction

Prefabrication and modularization

Energy-efficient products

AI, Big Data

Clean Power Supply: Increasing the Percentage of Clean Energy Using in DC Clusters

People made great efforts to develop clean sources such as photovoltaic and wind energy

1 Green power purchase/Direct supply

2 Campus ESS

Flatten the peak and valley electricity prices of the grid.

'-----

	Data cen	ter
	2 Campus ESS	智能光伏系统
	PCS	
	ESS	PV inverter
		\checkmark
		Low-voltage pow
•		
	Medium-voltage power distribution	Transformer
	\bigwedge	
	4 Removing Genset	
	Genset	
	·	

③Campus PV (4) Removing Genset making full use of resources such as the Hydrogen application instead of gensets roof of the data center campus

Low-carbon Construction: Innovative Construction Mode, Prefabrication + Modularization, High Recovery Rate

- 80% recovery rate, reducing carbon emissions by 8,000+t
- Fewer "three wastes", 62 tons of construction waste, 80% reduction
- The data center TTM is shortened by 50% (from June to September
- 2018).
- One DC at one layer, continuous evolution of modular design
- Low air leakage rate (10% to 3% to 5%) and low cooling loss

* 1500 cabinets, 8 kW/cabinet, 2N, 40-year lifecycle

Green Energy Use: Efficient Power Supply, Shorten Transmission Paths, Improve Conversion Efficiency

Core technology: Reconstruct power modules and load switches, 600 kVA/cabinet. Hot backup unit, hardware clamping patent, intelligent-online mode realize 0 ms switching

Traditional DC Power Supply: Long Transmission Paths, Multiple Conversion Layers, and Low Efficiency

Full busbars power supply architecture. Reshape power modules and switches

Power supply link efficiency : 94.5%

• Power saving: Power supply link efficiency is 97.8% (intelligent online mode). A 2.5 MW system saves 470,000 kWh/year. •Reduced area: Component integration, 2.5 MW@11 cabinets,, and reduced footprint by 40% • Time-saving: Products prefabricated, cables converted into busbars, delivery period reduced from 2 months to 2 weeks. •Peace of mind: Automated self-prevention and iPower support to build an "autonomous driving" power supply system

Server

Green Energy Use: Efficient Cooling, Use Natural Cooling Sources, Reduce Energy and Water Consumption

Indirect evaporative cooling: Reshape cooling system to maximize the use of natural cooling sources @AI

Chilled water system

7 sub cooling systems

Chiller Pump Tank CRAH Pipe Valve Tower

6 auxiliary systems JPS

 Long construction period, the cooling system takes up 66 % time. •Four-time heat exchange, low exchange efficiency •Seven components, which depend on manual O&M

- One box, one system, simplified delivery
- •From chilled water to natural cooling sources, One time heat exchange
- •Al-supported, the only commercial AI energy saving
- •Lithium battery direct drive, continuous cooling, "0" interruption

T	raditional Solution	EHU	EHU	
7 cooling system + 6 auxi	liary systems 🗧	1 cooling system+1 energy storage system	Heat transfer stages 4→1	
TTM	6 months	3 months	50% less	
PUE	1.22	1.15	Saving power 32% Annual saving 0.44M \$	
WUE (L/kWh)	1.41	0.94	Saving water 33% Annual saving 22k \$	
O&M	12 O&M personnel	9 O&M personnel	O&M personnel reduced by 25% Annual saving 45k \$	

Model: 1500 racks, 8kW/R, 50% load@Beijing, 0.12\$/kWh

Efficient Operation: Improve O&M Efficiency and Reliability, Optimized Resources Using

Manual inspection → Albased remote inspection

Smart sensing @IoT/voice recognition/ image recognition

Reduce people on site, unattended

Change from passive to active prediction

AI high temperature warning AI lifespan prediction AI fault alarm

Reduce resources invoked to handle failures

Resource optimization@Al

Intelligent matching between SPCN demand and supply

Optimized utilization of resources and balanced air distribution

Energy scheduling@Al

On-demand call of green power, energy storage, and backup power

Using Energy Storage to Achieve Peak Cutting and Valley Filling

SPCN: Space, Power, Cooling, Network

100% solar energy DC in Mideast

Total scale of 18 MW, containing 490 pre-fab. modules

5.5 days to deploy 49 pre-fab. Modules
8 months to deliver a 1.8 MW data center with a footprint of 2,000 m²
100% powered by clean energy, preventing annual carbon emissions of 13,000 tons

Large free cooling data center in Ireland

3,840 IT racks and 240 indirect evaporative cooling systems

PUE down to **1.15**, saving **14 million kWh** of electricity per year **66,000 tons** of carbon emissions reduced in 10 years Modular design, shortening the delivery period by **50%**+

Thank You!

