Smart DC, Building the Green Future

Huawei Next-Generation Smart Data Center Solution

Sanjay Kumar Sainani

Global SVP & CTO of Huawei Data Center Facility

Trend of DC in CEE&Nordic Europe

High energy prices

Carrier Colo Transformation

Next-Generation Data Centers: Driven by Innovation, Building a Low-Carbon Intelligent Computing Base

Major Challenges to Traditional Data Center Construction

High energy consumption

Long construction period

Difficult O&M

High security risks

Sustainable

Simplified

Autonomous Driving

Reliable

O&M Automation

O&M Automation

All Green

All Green

All Ffricient

Simplified Power strongy

Simplified Power strongy

Proactive Security

Sustainable: Efficient Use of Resources Throughout the Life Cycle

All Green

Electricity

Use green power on a large scale Use renewables such as PV, wind power, and hydropower instead of thermal power.

Land

Use land in an intensive way Enable each square meter of land to carry more computing power.

Water

Use less clean water Use reclaimed water or even no water.

Climate

Use more free cooling The free cooling duration can be extended if temperature and humidity are proper.

All Efficient

Evaluation indicator: PUE → **xUE**

All Recyclable

Recycle materials at component, room, and campus levels.

> Equipment room/campus level

Component/Auxiliary Material Level

Board level

electronic components

Simplified: Reshape Product Forms of Architecture, Power Supply, and Cooling

Simplified Architecture

Prefabricated buildings

Breaking a whole into parts: parallel works thanks to product design of engineering

Simplified Power Supply **Component integration** Physical connections → Converged power supply

Simplified Cooling

Simplified cooling link

Maximized use of free cooling sources and one heat exchange

Autonomous Driving: Al Maximize the Value of "Maintenance, Optimization, and Operation"

O&M Automation

Manual inspection → Al-based remote inspection

Smart sensing @IoT/voice recognition/ image recognition

Inspecting 2000 racks, 2 hours → 5 minutes

Automatic Energy Efficiency Optimization

Enables Smart Cooling

Auto energy efficiency optimization @AI

Water-cooled chilled water: 8%-15%,

Air-cooled chilled water: 5%-10%

Operation Autonomy

Maximizes Resource Value

Intelligent matching between SPCN demand and supply

Resource utilization: 65% → 85%

Reliable: Build a Comprehensive Defense Line for Data Center Infrastructure.

Proactive Security

Al predictive maintenance

Fault prediction

Remedy → Prevention

Automatic fault response

1 min discovery, 3 min analysis, 5 min service recovery

Manual response → Automatic response

Build a Low-carbon Smart Data Center Based on The Four Concepts of The Next-Generation Data Center

Clean Power Supply: Increasing the Percentage of Clean Energy Using in DC Clusters

Low-carbon Construction: Innovative Construction Mode, Prefabrication + Modularization, High Recovery Rate

- 80% recovery rate, reducing carbon emissions by 8,000+t
- Fewer "three wastes", 62 tons of construction waste, 80% reduction
- The data center TTM is **shortened by 50%** (from June to September 2018).
- One DC at one layer, continuous evolution of modular design
- Low air leakage rate (10% to 3% to 5%) and low cooling loss

* 1500 cabinets, 8 kW/cabinet, 2N, 40-year lifecycle

Green Energy Use: Efficient Power Supply, Shorten Transmission Paths, Improve Conversion Efficiency

Traditional DC Power Supply: Long Transmission Paths, Multiple Conversion Layers, and Low Efficiency

Full busbars power supply architecture. Reshape power modules and switches

Green Energy Use: Efficient Cooling, Use Natural Cooling Sources, Reduce Energy and Water Consumption

Indirect evaporative cooling: Reshape cooling system to maximize the use of natural cooling sources @Al

Efficient Operation: Improve O&M Efficiency and Reliability, Optimized Resources Using

Manual inspection → Albased remote inspection

Smart sensing @IoT/voice recognition/ image recognition

Reduce people on site, unattended

Change from passive to active prediction

Al high temperature warning
Al lifespan prediction
Al fault alarm

Reduce resources invoked to handle failures

Resource optimization@Al

Intelligent matching between SPCN demand and supply

Optimized utilization of resources and balanced air distribution

Energy scheduling@Al

On-demand call of green power, energy storage, and backup power

Using Energy Storage to Achieve Peak
Cutting and Valley Filling

Thank You!

