

Edge. What is the big deal?

		d ŏf L	dD								
				esear							

						×									
								×							
/×															
/ × 🖸		E		_ ×					×						
									×						
×	Dat	tac	cer	nte	2r										
				×	×										
×	62	ea	I I×C						7						
×															
								/*							
							×								
			×												

A full-scale research datacenter and test environment with the objective to increase knowledge, strengthen the AI & DC ecosystems and attract researchers.

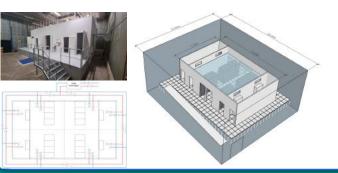
- Che 30 projects, from the ground to the cloud
 - 28 employees

Perm

OCP servers

- 4 MEUR turnover
- Established 2016

Stakeholders: Ericsson, ABB, Vattenfall, Facebook, LTU, Region North, Space agency

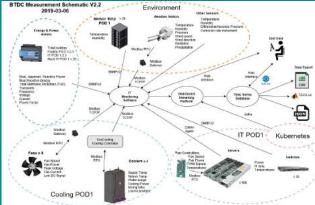

RISE ICE Datacenter current test environment

Module 1 & 2 Compute clusters

Module 4 Facility hardware test lab

Module 3 OCP Lab + Climate box + Heat box

Edge + wind tunnels + liquid cooling test bed



BTDC – a H2020 project

GA 768875

An EU H2020 project 3 MEuro with partners H1 Systems, Ecocooling, Fraunhofer, RISE and BBA. RISE budget 0,9 MEuro

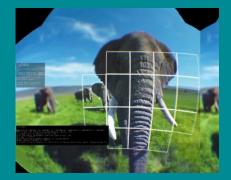
Goal was the Most Energy and Cost efficient datacenter in the world

It is a Greenfield datacenter project with fresh air cooling, wooden structure, open-source data collection and holistic control with a PUE < 1,1

(Result PUE=1,015)

							×									
		\checkmark														
									×							
	×															
										×						
	× 5	G	ă r	ňď	60					×						
						×										
×	×	m	Da													
		×								1						
	×															
	×								× × ×							
	×××							× × ×	× × × ×							
	× × ×			× × × ×				× × × ×	× × × ×							

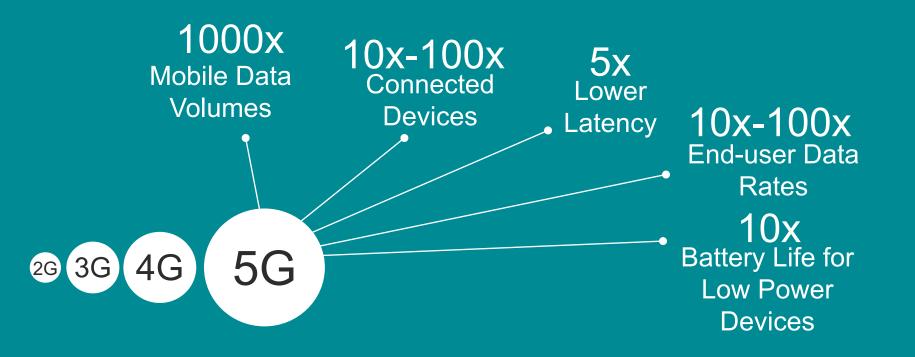
5G starting with enhanced MBB and then enabling new evolved industry use cases


Source: Ericsson

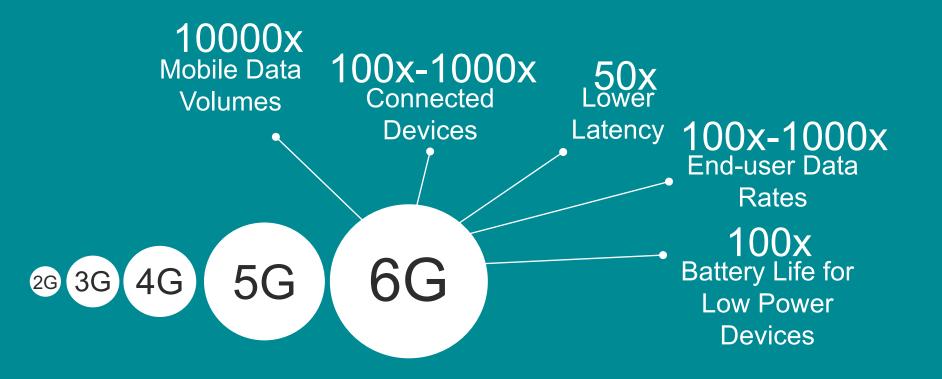
5G – a real game changer

Full-length HD movie in seconds

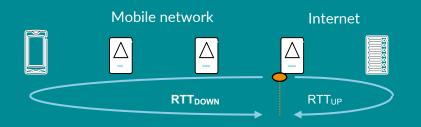
10 year battery life for remote sensors


MU-MIMO 15 GHz, 800 MHz IBW

Remotely operated robots and machinery

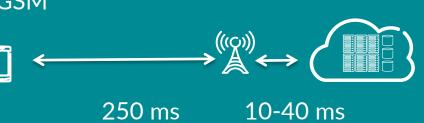

Virtual and Mixed Reality

5G Requirements

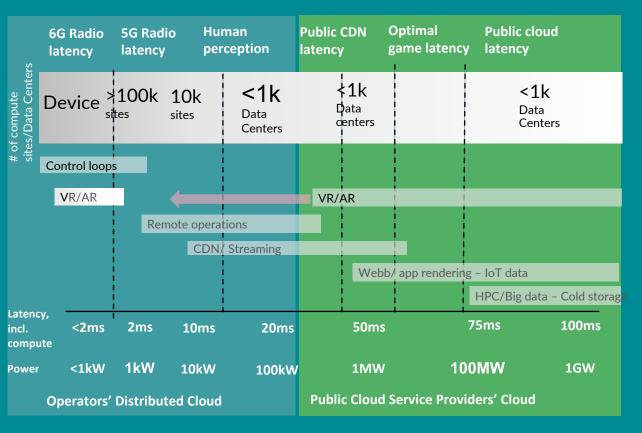


Source: Ericsson

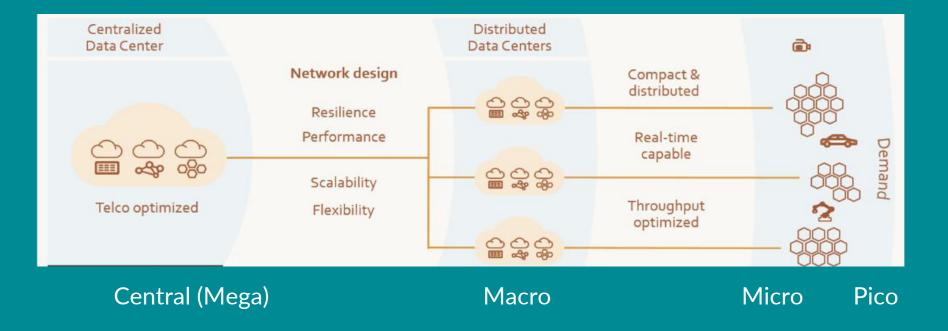
Evolution Towards 6G

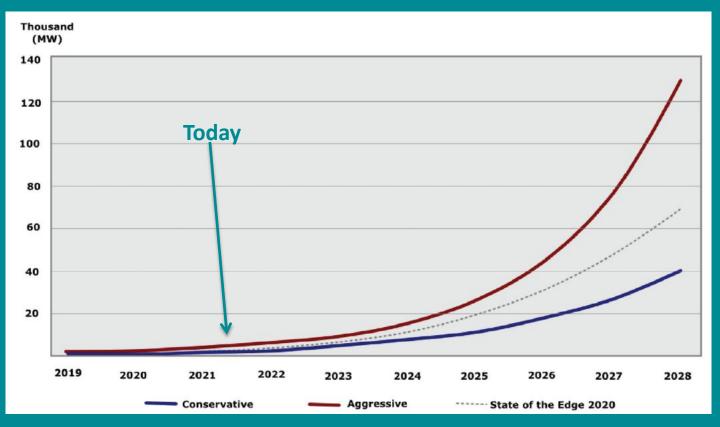


5G/6G networks and edge datacenters

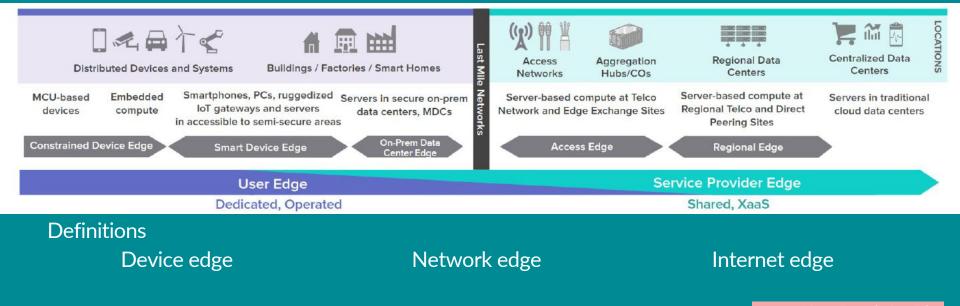

	3G	4G	5G	6G	
RTTup	20%	50%	80%	95%	Increasing part of the delay
RTTDOWN	80%	50%	20%	5%	Approaching 5% for 6G
RTTTOTAL	200 ms	40 ms	25 ms	21 ms	Depending on many parameters

GSM


Distributed cloud with latency as driver



5G and 6G will be a network with distributed large scale IT Cloud + Edge to enable the use cases


What is the timing for this?

							×									
									×							
	×															
										×						
	/ × N			٥r	Ž	٥×ط	ge	×		×						
×	×			ΎΙ	$\sum_{i \in \mathcal{N}} f_{i}$		5	×								
				_	•											
×	×C	Ør	np	ut	:in	g										
× ×	× C ×	٥r	np ×	eut ×	:in	g ×				×						
× × ×	× C × ×	Ør	np ×	eut ×	:in ×	8 ×				×						
×	× C ×	Ør	np × ×	eut × ×	:in × ×	8 × ×				×××××						
× ×	× C ×	or × ×	np * *	vut × ×	:i•n ~ ~ ~	× × ×			× × × ×	×						
× ×	× C ×	8 × ×	np * * *		:in * * * *	8 × × × ×		× × × × ×	× × × × ×	× × × ×						
× ×	× C ×	8 × ×	np * *			8 × × × ×		× × × × × × ×	× × × × × × ×	× × × × × ×						

What is Edge computing?

Edge computing is about pushing intelligence and processing capabilities closer to the end user or where the data originates or offer off-loading

Source: Linux Foundation Edge

What is Edge computing?

Edge computing is a platform for many application

Edge computing platform

HW nodes, Orchestration, developer tools, networking, mobility


Definitions

AI, AR/VR etc on edge platform

Edge platform for AI, AR/VR

Example: Mining and civil engineering

Decision support system for underground ✓For increased safety ✓For improved productivity

Two products ✓Mobilaris Mining Intelligence ✓Mobilaris Onboard

Example: Augmented/mixed reality

Augmented reality is the integration of digital information with the user's environment in real time.

Large number of use cases
✓ Connecting remote workers
✓ Assisting with complex tasks
✓ More efficient warehousing and logistics
✓ Enhanced learning outcomes
✓ Real-time data & analytics

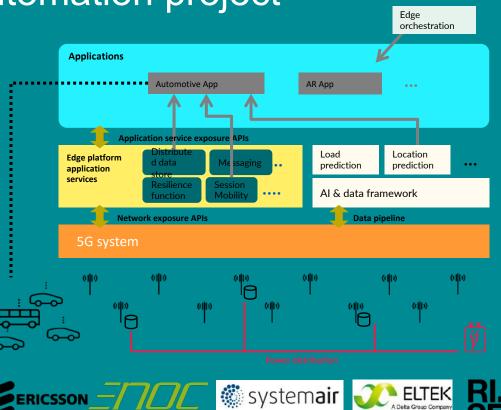
visualization

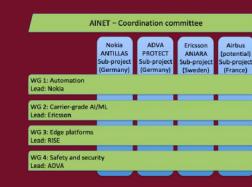
Source: ER Strategic design

Biggest ever platform for innovation?

- Web browsers and back-end servers made internet an innovation platform
- Apps on mobiles and back-end servers made mobiles an innovation platform

• Edge makes 5G a New innovation platform


Edge will not eat the cloud



Edge will make the cloud grow

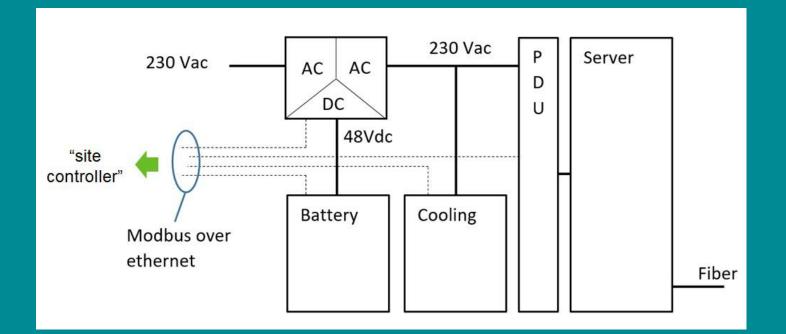
						×									
								×							
/×															
′ × N		┾ ╲ѧ <i>╻</i>	×	×	\sim^{\times} d		×		×						
×	NE	tw	U	K	e.u	ge	×		×						
×r	0	de	C	$\neg \varsigma$	igr	×									
		×		×	' Q '	×									
×S		dy	×						7						
X															
								×							
							×								
			×												

ANIARA - An Edge network automation project

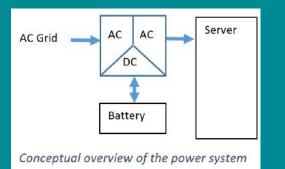
ANIARA

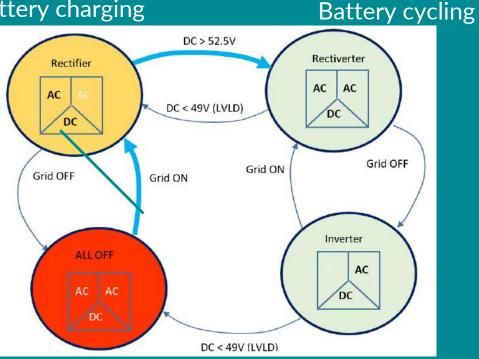
Delta Group Compan

- An European cluster project on automation of a network of edge datacenters, with orchestration, availability, robustness, optimization and reliability. Ericsson led.
- Celtic Next program. Budget 7 MEuro over 3 years


1:st demonstrator (September 2021)

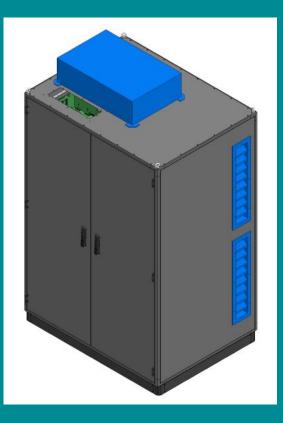
- "Network nodes will be deployed at locations NOT prepared for the power requirements of edge-centric compute"
- 1 server rack + 1 power rack + cooling + IP65 enclosure
 - Input Power from the grid 8kW (Max)
 - Output Peak Power to the server 12kW (Max)
 - 450 Ah Batteries for supporting peak power to server
 - Direct Free Cooling and active cooling & heat recovery


Power system, basic block diagram



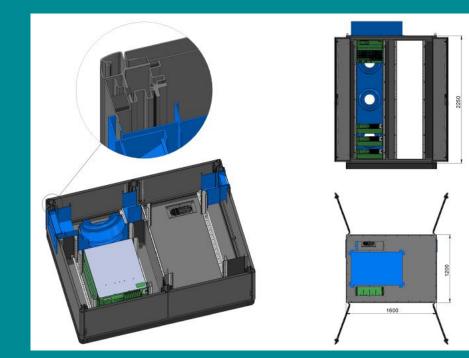
7 December 2021

The four states of the power system

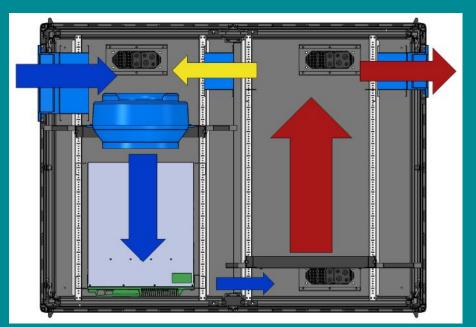

Battery charging

Enoc edge node enclosure

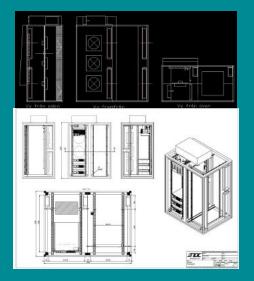
- Outdoor enclosure
- IP 65, water and dust resistant
- Corrosion resistant, aluminium
- Robust, resist vandalism
- Double walled to minimize condensation
- Possible to add insulation if needed
- Modular design, any width/depth/height possible



Enoc edge node enclosure


Configuration

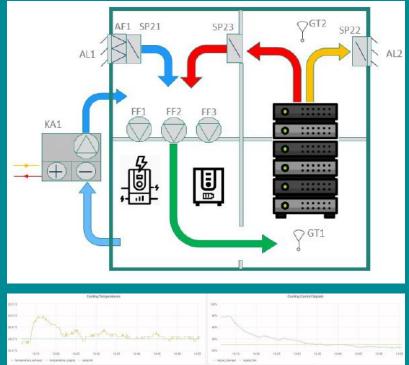
- 1600 mm wide
- 1200 mm deep
- 2250 mm high
- 2 compartments
- Left for utility
- Right for active equipment
- 2x 47 HU
- Separate cold/hot air


Airflow in the node enclosure

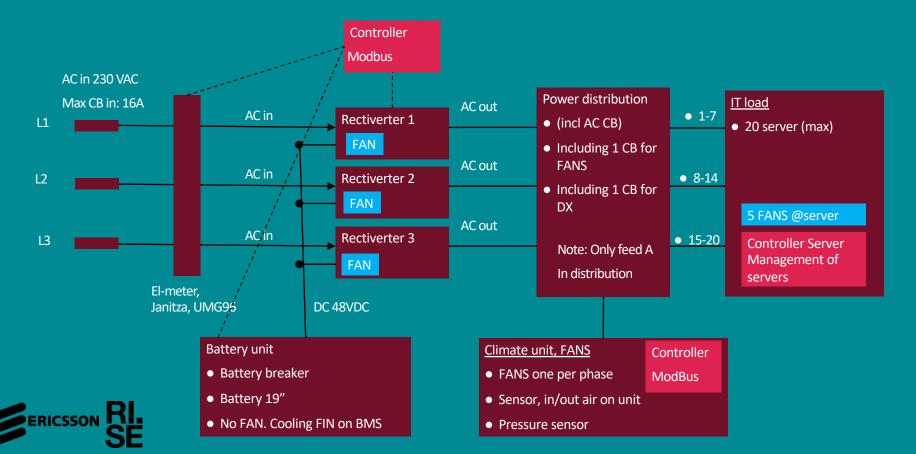
Side and roofpanels adapted to Systemair cooling system

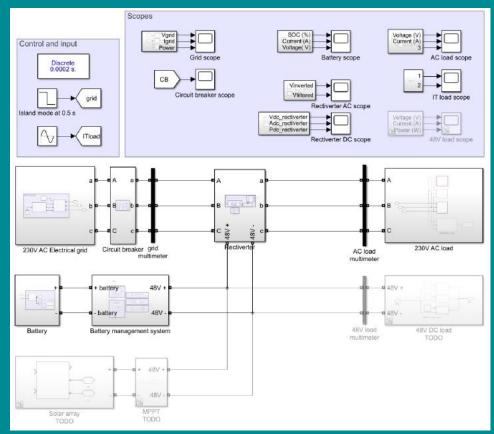
Cooling of the enclosure

Concept

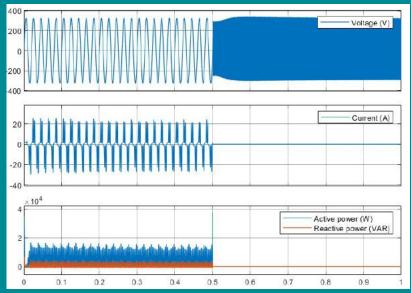

Conce

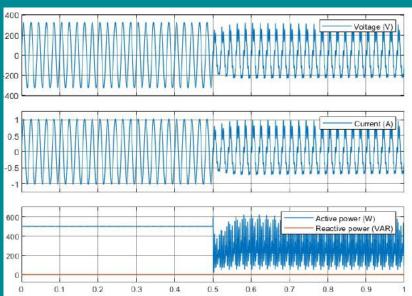
Cooling Principle; DFC and AC with heat recovery


- Direct Free Cooling with outdoor air within A1 Recommended @ Ashrae
 9.9 up to 9kW, DFC + AC up to 12kW cooling capacity.
- Energy recovery by air with duct connection and/or water loop connected to other system



Simulation model of the node


Model overview



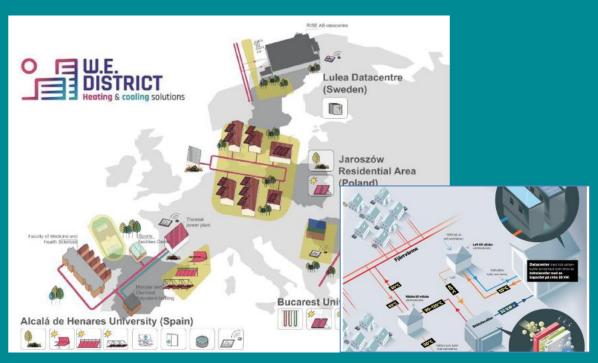
Model capabilities

AC input from grid

AC load

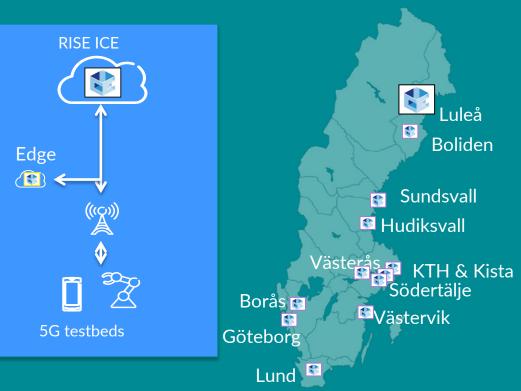
						×									
	\checkmark														
								×							
/×															
/ × D	RIS			- ×					×						
×			CL	- ×	×				×						
×	Č.	th	er	e (g										
×	×	• × •	_×.	×	¹ O	×									
× G	ct	IVI	τle	52											
X															
								*							
							×/								
			×												

The AutoDC project



The goal is to lower OPEX by making datacenter self-healing, self-optimizing and robust. Use cases are edge DC, rural DCs and mega-scale DCs

- AutoDC is an ITEA3 project about autonomous datacenters
- Total project is 73 MSEK over 3 years
- Ericsson manage the project and RISE is Swedish coordinator.
- Partners are Ericsson, other Swedish partners, Granlund, Aalto, Orbis and kWSet (Finland) and Canadian partners


WEDISTRICT - EU H2020 project Datacenters and fuel cells

- The project focus is to demonstrate multiple RES based District Heating and/or Cooling systems in Europe.
- The total budget is about 20 MEuro and RISE funding is around 1,2 MEuro.
- Our focus will be the recovery process using liquid cooling and a fuel cell to increase the temperature and use the electricity from the fuel cell for the datacenter

A National Edge application testbed initiative

Objectives

- To expose RISE data platform resources to developers and researchers at 5G testbeds, RISE T&Ds and other testbeds
- To develop technologies, usage, products and services
- To strengthen Swedish companies to compete on the world market
- To enable Sweden to be world leading in different areas for example edge compute, IoT, mobility, AR/VR

: 		×																	
	5	×																	
		×	×			×				×									
			×	72	An	IK	\mathbf{N}	0	×	×									
			×	×	×	×	×	×	×	×									
			×т	Ōr	Bjö	rň I	Min	đþ											
			×	×	×	×	×	×											
			×	×	×			- I - (~:				×	/					
			- t ×		ojŏr 70	n.r		de((۳۱. ×	.se ×			×						
			× +	-46 ×	70 ×	624 ×	429 ×	×59					×						
													×	× _	× _	× _			
			(Dtc	orsh	am	me	er. (ิจเด	Έb	/RIS	SF							

@torshammer, @ICEbyRISE