
NEW Decade = NEW Challenges

CAPEX vs. OPEX vs. Availability

Robert Turkeš

Head of Sales Europe and CIS STULZ GmbH – Germany

45 years married, 3 kids

Master electrical engineeringsince 1999 at STULZ and in the DC Industry


Mail: turkes@stulz.de Phone: +49 40 5585 527 Mobile: +49 163 859 2937

Stulz Nordics AB

Sweden, Finland, Norway, Denmark

Stulz Nordics AB

Based in Stockholm

- Pre sales
- Design assistance
- Aftersales support
- Commissioning
- Service support
- Data Center optimisation

25 years difference

Every Decade had it's challenges

90's

- Start of the CoLo market
- Massive grow of Data centres, huge investments
- Manufacture were not prepared for the run
- Dot-com crises

In Focus Availability - CAPEX

Out of Focus OPEX

Every Decade had it's challenges

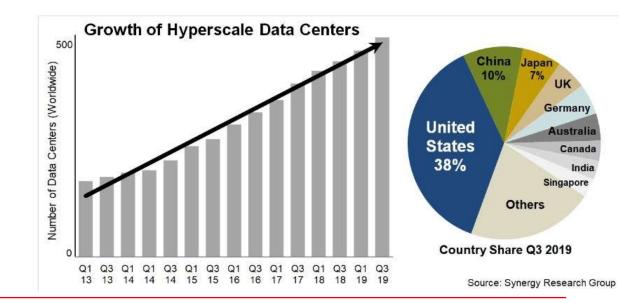
00's

Recovering from the crises Optimising / recycling of the fast deployed Data Centers form the 90's

In Focus CAPEX - OPEX

Out of Focus Availability

Every Decade had it's challenges



10's

Growing CoLo and Hyper Scale market Unstoppable Digitalization

In Focus CAPEX – OPEX (TCO)

Out of Focus Availability

Every Decade -had has it's challenges

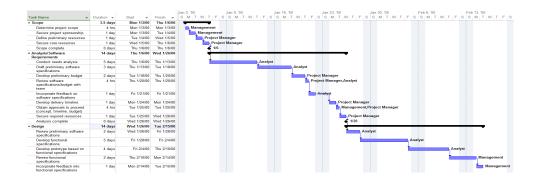
20's

- COVID-19 crises
- Extended demand for digital services
- broken supply chains
- War in Ukraine

In Focus Availability - OPEX

Out of Focus CAPEX

Ways out of the 20's challenges



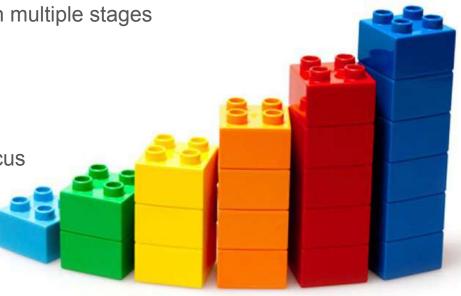
Ways out of the 20's challenges

Availability

Planning horizon

- High demand
- Broken supply chains
- Long lead times across the industry with unknown development.
- Early planning and reserve

Ways out of the 20's challenges Availability



Scalability

- Scalable systems are helping in Projects with multiple stages
- build on demand build as you grow

Reduce complexity

- If availability or time to market is the main focus
- Less components inverters etc.

Ways out of the 20's challenges OPEX

Securing / producing "cheap" energy

Reduce OPEX

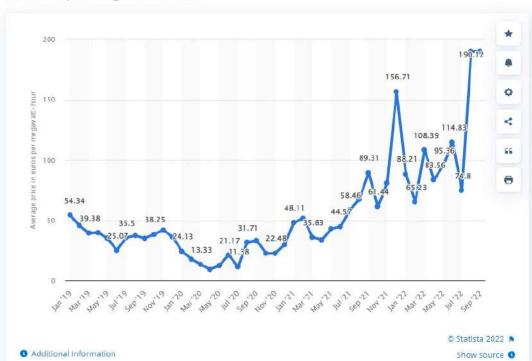
- Lowering the power consumption
- use of energy efficient equipment
- use of free cooling
- Changing the design conditions
- scaling
- energy re-use (heat recovery)

Slide from Every customer has it's own definition what minimum cost means

- Equipment
- Installation
- Planning

CAPEX

OPEX


Slide from 2021

Changing of the planning ③

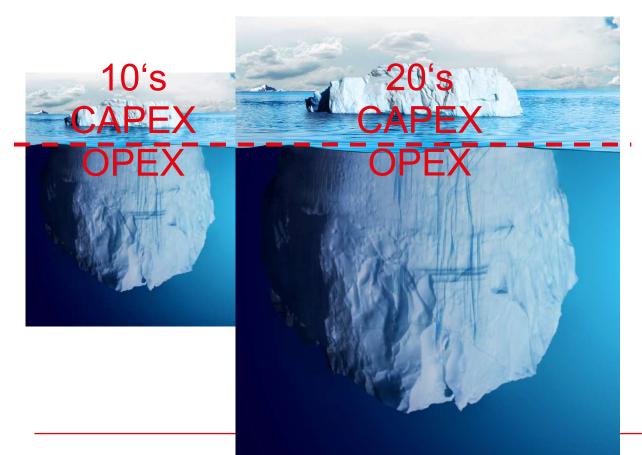
- Energy cost
- Maintenance cost
- Legally required inspections
- Repairs
- Spare parts

Average monthly electricity wholesale price in Sweden from January 2019 to September 2022

(in euros per megawatt-hour)

France: 1-Year forward baseload power (€ / Mwh)/

French power prices are soaring


1-year forward baseload power (€ per Mwh)

Source: Refinitiv

Changes in less then 1 year....

Energy cost get out of control

Future development is unpredictable

Heat recovery

- Perfect option to re-use produced power a 2nd time.
- Very good infrastructure in the Nordics
- Stulz have various solutions to be used in heat recovery systems
- Very depending on the location and the demand.

STULZ

Free Cooling

ORING

- Using cold ambient temperature to reduce / eliminate the operation of mechanical cooling.
- Long free cooling periods in Nordic country
- Stulz is world leading in Free cooling systems of all kind.

Free Cooling Effect

Free Cooling Effect

DX-System compared to Indirect Free cooling system (GE System)

Conditions: heat load: return air conditions: location: price per kW/h: Annual increase energy cost :

1.000 kW 33°C / 30%r.H. Stockholm 0,10 € 3%

Free Cooling Effect

Free cooling ≠ Free cooling

Water 12/18°C → MIX / FC ...**below 12°C**

Room Air 18/30°C → MIX / FC ...**below 18°C**

- Use the complete range of possibilities
- Temperature reference point
- Within the ASHRAE recommendations much more possibilities

Operation point

Indirect Free cooling system (GE System)

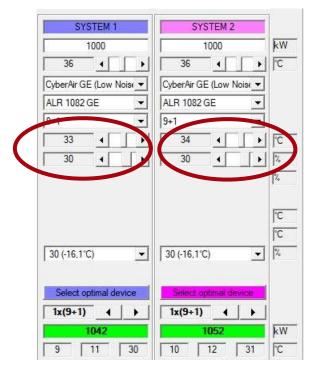
heat load: return air conditions: location:

1.000 kW 33°C / 30%r.H. Stockholm

price per kW/h: Annual increase energy cost :

0,10€ vs. 0,40€

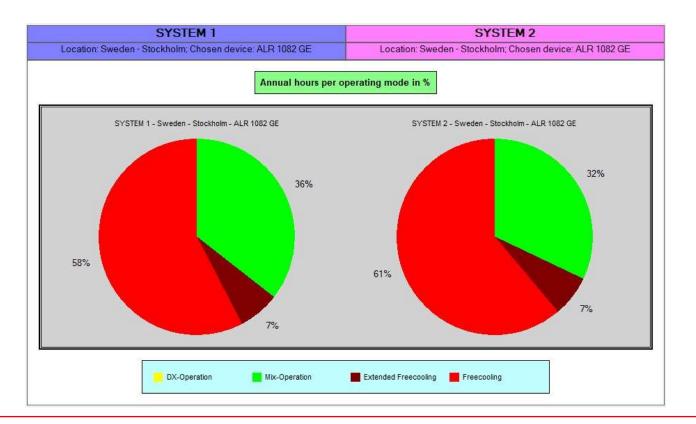
3% vs. 10%


OPEX Effect

Annual increase energy costs:	%	3	10	
Capital interest:	%	0	0	
Period of depreciation:	Years	10 4 >	10 • •	
Operating and Total costs		Total	Total	
Operating costs per year	EUR	94.034	137	282 103
Total costs after 1 year	EUR	50	.515	282 103
after 2 years	EUR	NEW 887.781	1.284.266	598 995
after 3 years	FU	NE	1.739.392	954 364
after 4 years		887.781	2.240.030	1 352 249
after 5 years	3	993.617	2.790.732	1 797 115
after 6 years	EUR	1.102.628	3.396.504	2.293 876
after 7 years	EUR	1.214.910	4.062.854	2.847.944
after 8 years	EUR	1.330.560	4.795.839	3,465,279
after 9 years	EUR	1.449.679	5.602.122	4 152 443
after 10 years	EUR	1.572.372	6.489.033	4 916 661

OPEX Effect

Annual increase energy costs:	%	10	10	
Capital interest:	%	<u>, 0</u>	0	
Period of depreciation:	Years	10 4 10	• •	
Operating and Total costs		Total	Total	
Operating costs per year	EUR	376.137	1.189	-44 948
Total costs after 1 year	EUR	870	555	-27.960
after 2 years	EUR	D NEWS	1.206.863	-77,403
after 3 years	EUP	NE	1.607.602	-131.790
after 4 years	50	.240.030	2.048.415	-191.615
after 5 years	JU	2.790.732	2.533.309	-257.423
after 6 years	CUR	3.396.504	3.066.692	-329.812
after 7 years	EUR	4.062.854	3.653.414	-409.440
after 8 years	EUR	4.795.839	4.298.808	-497.031
after 9 years	EUR	5.602.122	5.008.741	-593.381
after 10 years	EUR	6.489.033	5.789.667	-699.366


-22%

STULZ

-700.000,-€ In 10 Years

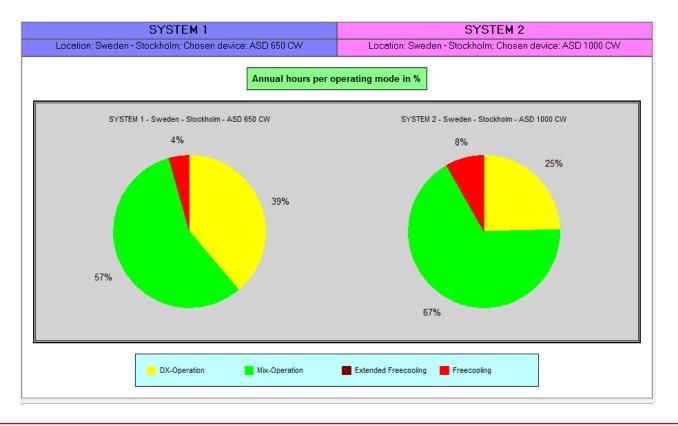
STULZ

CW System water temp 7 / 12°C compared to

CW System water temp 11 / 16°C

Conditions: heat load: return air conditions: ocation: price per kW/h: Annual increase energy cost :

3%


24°C / 50%r.H.

1.000 kW

Stockholm 0,13 €

Visibility and information is the key

CyberHub ECO.DC

#1 Cutting operation cost

Precisely track down potential savings and implement them immediately.

#2 Reducing the impact of unplanned downtime Round the clock monitoring

#3 Ensuring quick response time to external influences or defects

Collect measurement data from all energy consumers, and collectively analyse them for the entire data center.

Global & Local know-how

- Global Production plants
- Stulz KAM Team
- Stulz Cloud application team
- Business unit chiller
- Stulz network 11/22/140
- Service

- reduced shipping, local / redundand supply chains
- global coordination, customer specific requirements
- Cooling concepts, special designs
- Chiller / hydraulic concepts
- worldwide country specific knowledge
- worldwide factory certified technicians

Stulz Nordics AB

Based in Stockholm

Pre sales
Design assistance
Aftersales support
Commissioning
Service support
Data Center optimisation

THE WHOLE RANGE OF COOLING. FROM ONE SINGLE SOURCE.

Thank you for your attention

