RE-ENTRY OF LIQUID COOLING IN THE DATACENTER

CAMILLA O'LEARY STRATEGIC ACCOUNT DIRECTOR

Agenda

- What is driving the new interest in liquid cooling in the datacenter environment?
- Relationship between applications and high energy density
- High density IT-equipment and implications for the datacenter
- Liquid Cooling Technology Overview
- Liquid Cooling Market Size and Growth
- Preparation for adoption
- Sustainability

Architects of

Continuity

Driving force behind the new interest in liquid cooling

First a step back....

Electrical consumption of a server translates <u>100% to heat</u> (YES! except for the few mW that can leave the server via network cables)

Example: server consumes 1 kW and emits 1 kWth of heat

Law of conservation of energy: *Energy cannot be lost but can only be transferred to another form*!

Driving force behind the new interest in liquid cooling

But servers are becoming more energy efficient, aren't they?

That's certainly true, but we're talking about the relationship of computing power versus energy consumption (flops / watts)

Additionally, the demand for higher computing power is still increasing, causing total energy consumption to grow faster than ever before in datacenters

Why?

IoT (Internet of Things)

ERTIV.

Healthcare

Finance-Trade automation Fraud detection

Media and Entertainment

Driving force behind the new interest in liquid cooling

New demand for liquid cooling

Due to the new generation of Chips, there is now a technical necessity that has arisen

Trend for watts per processors has stepped up

Market Drivers

High power Chips

CPU and GPU server components increasing in power resulting in higher Thermal Design Power beyond air cooling capability

Ū.

Low Latency

Interdependency of components bringing them closer together = compaction of components making it difficult to cool with air

AI & HPC

Adoption beyond science labs. HPC going into mainstream adoption including cloud based HPC, Finance, Online Gaming, Media & Entertainment

Environment/Efficiency

Reduced power consumption eliminating fans and compressors. No Noise

Harsh environments

Sealed systems deployed in uncontrolled environments without airflow

Implications for the Data Center

Liquid cooling is not new, is it?

There have been servers and even entire datacenters with liquid cooling for years. (OVH is a good example)

We all want lower costs.

This is not an easy task, certainly not in a Colo datacenter (shared datacenter). Colo DCs have customers with variety of server hardware

Initial costs of Liquid cooling are high compared to air cooling and earning back on energy costs is not easy

Fear of water near equipment

Implications for the Data Center

Challenges

- Managing airflow with dynamic loads (Hot Spots)
- Reduced inlet temperature for High Density IT Equipment
- High return temperatures from High
 Density IT Equipment
- Managing Energy efficiency and sustainability goals

Solutions

- Deploy cooling in close proximity to heat source
- Air flow management; containment, in-row, in-rack
- Direct to chip liquid cooling cold plate
- Immersion cooling

Liquid Cooling Technology Overview

Liquid Cooling Technology Overview

Datacenter facility side for liquid cooling

Liquid Cooling –Market Size & Growth

Liquid Cooling Technologies - Preparing for Adoption

Strategies for Effective Design, Build, Deployment and Maintenance

Industry enablement to deploy liquid cooling at scale to support growth in high density

Vertiv Covers the Complete Liquid Cooling Eco System

Thermal Sustainability Trends and Innovations

Sustainability in High Density

Sustainability Metrics

PUE:

Total Energy Consumption IT Energy Consumption Annual water use

IT Energy Consumption ERE:

Cooling + Power + Lighting + IT Reus IT Energy Consumption

Direct to Chip

- Reduction in fan power
- Component cooling at source
- 70%+ Heat to liquid

pPUE

- Highest liquid temperatures
- Use of dry coolers in most climates
- Reduces water use

pWUE

- Use of high return water temperatures
- Pre-heating for boiler or electricity supply
- District or domestic heating

Immersion

- Eliminates server fans
- Component cooling at source
- 100% Heat to liquid

pPUE

- High liquid temperatures
- Increased potential for dry coolers
- Reduces water use

pWUE

Additional benefits

- ✓ Facility footprint reduction (Power distribution)
- ✓ Reduced need for cold aisle (Immersion)
- ✓ Easier to manage dynamic loads
- ✓ Support for high density applications
- ✓ Reduction of energy consumption in low density
- ✓ Flexible for Edge or Modular DC deployments
- ✓ Increased use of free cooling
- ✓ Heat reuse potential

